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Abstract-It is demonstrated that a previously developed topological expression for the total n-electron energy of 
aromatic molecules provides a good qualitative account of localization energies. The logarithm of the ratio of the 
algebraic structure counts for the ground state and the localized reaction-intermediate is the principle energy 
determining factor. This expression fails for hydrocarbons with unusually small HOMO-LUMO separations. An 
alternative topological expression that includes a correction for this situation provides an excellent non-empirical 
explanation for the successful empirical use of Dewar reactivity numbers in correlating exact localization energies. 
The present analysis provides an explanation for the success of the traditional resonance structure counting 
technique in predicting relative rates of aromatic substitution. The analysis develop applied only to oltemant 
hydrocarbons. 

1. lWRODUClTON 

In part X’ of this series’ the validity of resonance theory 
was analysed with emphasis on the role of Kekult 
structures in determining the thermodynamic stability of 
conjugated molecules. One of the conclusions obtained 
was that KekulC structures should not be simply summed, 
but their parity should also be taken into account. Hence, 
if the ASC = algebraic structure count (K’ -K-) is 
considered instead of the ordinary structure count 
(K’+K-), resonance theory can be used with equal 
quantitative success for benzenoid and nonbenzenoid 
alternant systems. In the present work we would like to 
extend these arguments to the study of substitution 
reactions which may occur on an sp*-C atom of the 
conjugated molecule. It seems worth mentioning here that 
in ah previous work* on the application of graph theory to 
the chemistry of conjugated systems3 only ground state 
properties have been investigated, so that until now it has 
been possible to give only indirect predictions of 
reactivity. 

The approach used in the previous part and employed 
here was to develop a simple quantitative expression for 
the Hiickel P-energy in terms of the graph-ttieoretical 
parameters N (the number of vertices in the a-network), Y 
(the number of edges) and ASC. Although the equation 
given in part X reproduced n-energies to within a 
few percent, the application of it to calculating the small 

“This work was carried out at the Rugjer BoIkoviC Institute, 
Zagreb, Croatia, Yugoslavia. 

energy differences that are associated with localizing a 
rrelectron during an electrophihc reaction is a much more 
demanding test. As will be seen, the previous equation is 
only partially successful. Analysis of the source of the 
error leads to an improved non-empirical expression. It 
will be shown that this expression accounts quantitatively 
for the success of the empirical applications of De.war 
reactivity numbers. 

2. ATOFOLOGlCAL.FORMULAFORTOTAL 
a-ELEcmoNENERGY 

In this section the essential results derived in Part X 
will be outlined and recast in a form more suitable for the 
present analysis. The notation is the same as before and 
will not be defined in detail. 

Following Part X, if there are n zeros in the spectrum of 
the molecular graph (n > 0), a quantity asc is defined as 

where II’ means multiplication over all non-zero x{s. 
Since’ 

(AX)’ = fi Ix,1 

USC is a generalization of the notion of algebraic structure 
count. For the case where there are no zeros in the graph 
spectrum (n = O), of course, 

ASC = asc (3) 
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Ifn=l 

(asc)’ = 2 ((ASQ.),) (4) _ 

where (ASC), is the algebraic structure count of the graph 
G-p. Expressions for asc can be obtained’ also for n > 1, 
but they will not be used here because graphs of 
chemically relevant hydrocarbons have as a rule n = 0 
when the number of carbon atoms, N, is even and n = 1 
when N is odd. Note that arc is defined in such a way that 
it is always positive. 

In Part X the following approximate formula is derived: 

2 In (a.~) = 2 (-l)“‘u,WI 
_ 

where 

(6) 

and u’s are positiue constants, which have been 
determined previously’ by a least squares method. P 
means summation over all non-zero x,‘s. If 

Wt = $ hl 

it is easily seen that 

w:=w, (8’) 

for t = 1, 2,. . ., and 

WA= Wa-n 

Since 

Wo=N 

W,=E, 
w2=2v 

etc. 

Eq. (5) can be written as 

(0 

(9) 

E, = 2 (N - n) + f In(asc) 

+ 2 v + higher order terms (10) 

Let us denote u~lu,, 2/u, and ZuJu, by A, B and C, 
respectively and temporarily neglect the “higher order 
terms”. This finally gives a topological formula for total 
Pelectron energy 

E, = A(N - n) + B ln(asc) + Cv (11) 

The previous values’ of ~0, II, and uz cannot be used in 
Eq (11) because they were evaluated for an equation that 
included higher order terms which are neglected here. 

Values of A, B and C derived by a least-squares fitting of 
Eq (11) to an arbitrarily selected group of IO benzenoid 
hydrocarbons and 20 hydrocarbon ions derived from them 
are 0.913,0.765 and 0.347, respectively. These constants 
reproduce the ?r-clergies with a standard deviation of 
0.128. The previous four-parameter equation, fitting a 
different but related set of molecules gave a standard 
deviation of 0.096 /3. Because. the present set of parame- 
ters fits simultaneously both hydrocarbons and hydrocar- 
bon ions, it would be expected that they should reproduce 
differences in energy with a precision of 0.12 /I. 

3. A Tofoux;ICAL FORMULA FOR 
LocALtzATtoN ENEXGY 

It is well known’ that localization energies calculated 
using the HMO theory correlate empirically very well 
with the reactivity towards aromatic substitution at a 
particular position in conjugated molecule. In graph- 
theoretical language the o-complex generated in the 
course of a substitution reaction is represented by a graph 
obtained after the deletion of the appropriate vertex from 
the molecular graph. For example, the molecule 1 and its 
two possible u-complexes 2 and 3 are represented by 
graphs MI, respectively. 

Note that the graphs 5 and 6 have one vertex and two 
edges less than the graph 4. Note also that n(IV) = 0 and 
n(V)=n(VI)=l. 

Now, if one considers a substitution reaction on the 
atom labelled by p, the localization energy, L,, is 

Lp = E,(G) - E,(Gp) (12) 

where G is the molecular graph and G, = G-p is the 
graph obtained by deletion of the vertex p from G, and, of 
course, all the edges incident on it. Application of Eq (11) 
gives 

E,(G) = AN + B In[ASC(G)] + Cv (13’) 

E,(G,) = A[(N - 1) - 11 t B In[asc(G,)] •t- C(v - 2) 
(133 

where it is assumed that n(G) = 0 and therefore n(G,) = 1. 
Hence, 

L, = 2(A t C) + B In[ASC(G)/asc(G,)l (14) 

where 2(A t C) and B are constants (but see discussion 
later) and thus the localization energy for the position p is 
determined by a unique topological parameter. 

D, = ASC(G)/asc (G,) (15) 

In the subsequent section it will be shown that the 
quantity Dp = 2D, is identical with an index introduced by 
De.war using a completely different and independent line 
of reasoning 

The following discussion should elucidate the chemical 
meaning of D, and its close relation to resonance theory. 
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The relative reactivity of two atoms p and q (not 
necessarily of the same molecule) is determined by the 
difference in the corresponding localization energies 

AL,=L,-L,=BInD,,/Ds (16) 

Moreover it it is assumed that this energy can be identified 
with the difference in free energy of activation,6 

k,/k, = exp (- ALERT) (17) 

where kp and k, are the rate constants for an aromatic 
substitution reaction on the atoms p and q, respectively, 
and T is the absolute temperature. By substituting Eqs 
(16) back into (17) one obtains finally 

(18’) 

or 

h&/k,) = P h0&%) (187 

The form of Eqs (18) strikingly resembles the Hammett 
equation.’ However, p = B/RT is here a positive constant 
(for a given temperature) which should not depend on the 
type of substitution reaction. To obtain the Hammett 
equation it is necessary to make the additional assumption 
that linear free energy relationship holds such that 
different reactions reflect different (but constant) degrees 
of approach to the fully localized intermediate. 

Another property of Eqs (18) seems also to be. of 
particular importance. Namely, if two positions of the 
same molecule are compared, 

DAD, = asc (G&SC (G,) (19) 

it follows that the position with larger asc o&e will be 
more reactive. By inspection of Eq (4) one sees 
immediately that asc is a quantity closely analogous to 
the number of resonance forms of the corresponding 
S-complex. If all resonance forms are of the same parity, 
the more reactioe position is the one which has a larger 
number of resonance structures in the corresponding 
&complex. However, in the general case the parity of the 
resonance forms is to be considered and “the number of 
resonance forms” should be replaced by “the algebraic 

count of the resonance forms”. Therefore, a graph- 
theoretical justification of the well known resonance 
theory technique (which is in fact a postulate)’ for 
predicting.substituent orientation is obtained. Modifica- 
tions of the traditional theory are necessary when all 
resonance forms are not of the same parity. The use of 
algebraic structure count instead of simple structure 
count enables the extension of the simple resonance 
treatment of aromatic substitution to nonbenzenoid 
systems, or, what is equivalent, the traditional resonance 
treatment is justified only for benzenoid molecules. 

Applications to some molecules containing cyc- 
lobutadiene rings will be given in the next section. 

AONTHEDEWARNUMBER 

The third important property of Eqs (14), (16) and (18) 
which we would like to point out is their relationship to 
the Dewar number 8. The Dewar number’ is in fact the 
approximate localization energy calculated by a simplified 
version of the perturbational molecular orbital method, 
and can be evaluated from the coefficients of the 
non-bonding molecular orbital (NBMO) of the corres- 
ponding hydrocarbon radical. Note that the graph 
which represents this radical was labeled by G,. The 
unnormalized) NBMO can be simply calcuated by a 
method of Longuet-Higgins.9 

Let this NBMO have a coefficient C, on the vertex r, 
and let r and s be the vertices which are in G adjacent to 
the vertex p. Then the Dewar number (in /3 units) is 
defined as’ 

N-l 
0, = 2(C, + Q/S c,’ (20) _ 

It has been shown by Dewar and Longuet-Hig+M’O and 
recently elaborated in more detail by Hemdon ’ that 

C, = + ASC(G,) (21) 

where G, = G, - r. Therefore, by comparison of Eqs (4) 
and (21) 

N-l 

Besides” 

3 C’ = [clrc(G,)l’ (22) 

C, + C, = ASC(G) (23) 
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and this gives simply 

fi,, = 2D, (24) 

In other words, our graph-theoretical arguments sug- 
gest localization energy is a linear function of the 
logarithm of &war number (Eq 14). Moreover, in Eqs 
(16) and (18), which determine the relative reactivities of 
two C atoms, the Dewar number can be written instead 
of D. 

In Fig 1 are plotted the exact HMO localization energies 
as a function of the corresponding Dewar numbers. On 
this plot is drawn both the empirical linear correlation line 
discussed by StreitwieserJ (Curve I) and the present 
logarithmic function (Curve II). For the molecules 
normally encountered in aromatic substitution studies the 
Dewar numbers fall in the range of I.0 to 25 AS can be 
seen, the two correlation lines are effectively equivalent in 

Dewar Reactivity Number, 4 

Fig I. Exact localization energies (in fi units) us several functions of 
the Dewar reactivity numbers. Curve I-Streitwieser empirical linear 
relationship, curve II-logarithmic relationship (see Eq. (I 1)). curve 
III-non-empirical graph theory, and curve IV-non-empirical first 
order perturbation theory. Circled points correspond to conven- 
tional benzenoid molecules; squares correspond to cyc- 

lobutadienoid molecules 7-9. 

this range, particularly if it is considered that the 
logarithmic function was not obtained by fitting the 
localization energies directly. Clearly, the logarithmic 
function form is flexible enough to fit the localization 
energies in the range of 1.0 to 2.5 with much greater 
precision if that were desired. 

The two lines diverge markedly for smaller values of fi. 
To explore this region we have calculated the Dewar 
numbers and localization energies for indicated positions 
in the molecules 7-9, which contain formal cyc- 
lobutadiene rings with the possibility for introducing 
Kekule structures of opposite parity. These molecules 
have the interesting property of each having an ASC = 1 
and therefore both small localization energies and Dewar 
numbers. When those points are added to the graph on Fig 
I it becomes apparent that although the best correlation 
line contains some curvature, it is no where near as much 
as the logarithmic relationship requires. 

In restrospect, it is obvious that Eq (14) would have to 
fail at_some point since it is easy to design molecules that 
have Dvalues arbitrarily close to zero and these would 
give, according to Eq (14). large negative localization 
energies-a physical absurdity. In the next section a 
possible resolution of this difficulty is considered. 

5. PKLUSION OF THE EKXER ORDER 
ANDOTHERTERMS 

In Eq (10) terms in [XI) and higher were omitted. 
However, these can not cause the above mentioned 
difficulty since they vanish as x goes to zero. It is 
convinient to add a term like l/x*. In this section we 
consider the effect of including such terms. For complete- 
ness we also include here the Ixr term since a convenient 
topological expression is available’ for W,. Also, as will 
be brought out shortly, inclusion of the /XI) term permits 
the constants in the final topological expression to be 
evaluated non-empirically in a way that satisfactorily 
accounts for the curvature in Fig I. 

Consider the following finite series approximation of 
1x1: 

1x1= AL In [xl+ A-*/x’+ & + Azx2 + A~lxl’ (25) 

Following the logic developed in Part X, for an altemant 
hydrocarbon 

Ew = AL In (ASC)’ + A_2 2 f + &N 

(26’) 
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Similarly for the odd AH derived by localization of one 
n-electron one has 

(26”) 

where the summation Z’ does not include x, = 0. The 
difference between the two equations is the required 
localization energy L. 

t 2& 

t4Az+A, 
difference 

in W, terms 1 (27) 

The first sum over l/x’ contains one more term than the 
second sum. This extra level arises from the interaction of 
the NBMO of the odd AH with an isolated zero energy 
r-center.’ These split to give the HOMO and LUMO of 
the even AH. With quite adequate precision (which 
improves for smiler x) the value of xHoM0 can be 
replaced by D, = DJ2. Insertion of this approximation 
into (27) gives: 

L, = 2AI. In D, + 2A-JDi t 2& 

t4Az+A, 
difference 

in W, terms 1 (28) 
Now, Eq (25) can be rewritten as: 

A,_ In [xl+ A_Jx* + & = 1x1- A2x2 - A,(xl’ 

Substitution of (29) into (28) for x = D, gives 

(29) 

L, = 2D, - 2AzD,2 - 2A,D,’ t 4A2 

+ A 
[ 

difference 
’ in W, terms 1 

Eq (30) can be further simplified by making the following 
approximations (see the Appendix) 

v/N= 1.11 

EJN = 1.35 

Although these approximations may be in error for typical 
molecules by as much as +lO%, it turns out that the 
constant A, in (30) is sufficiently small so that no 
significant error is introduced in this way. With these 
approximations the terms of (26) originated from sum- 
ming over [xl3 become 

= 3.04(E, -I%) (31) 

Thus (30) can be rewritten as 

- 2AzD,‘- 2A,D,‘] (32) 

Note that in (32) the localization energy as a function of 
the Dewar number depends only on the two parameters 
A2 and A, appearing in Eq (25). 

It should be clear from the form of this result that the 
exact localization energies could be fit rather well by 
appropriate (least squares) selection of A2 and A,. 
Instead, we have taken a different approach. We have 
evaluated the parameters AL, A .*, A,,, AZ and A, in (25) by 
least-squares fitting a uniform distribution of x’s over the 
range of 0.1 to 3.0. The upper limit corresponds to the 
maximum possible orbital energy level of a ?r system;‘* 
the lower limit corresponds to the smallest energy level 
encountered in Fig I. The resulting equation for this range 
is 

1x1= 0.3578 In 1x1 t 0~002608/x’ + 06652 

t 0.3879~’ - 0.0581 x’ 

Eq (33) yields the line marked III in Fig I. 

(33) 

Note that Eq (32) and the parametrization via Eq (33) 
are nonempirical. (Actually only the bracketed term is 
strictly nonempirical. However, as noted in Appendix the 
denominator shows such a small dependence on the 
structure of the hydrocarbon that it can be thought of as a 
characteristic constant). The source of the terms if purely 
topological and the parameters are derived from fitting a 
well defined mathematical function over a logically 
defendible range. The Streitwieser relationship is empiri- 
cal, although intuitively reasonable. An application of 1” 
order perturbation theory’ would require that the delocal- 
ization energy be exactly equal to D,. As can be seen from 
Fig I a poor accounting for the variation in localization 
energy is thus obtained. 

One might ask how the present result would change if 
very small x values were encountered. In principle Eq (25) 
could be extended to include higher powers of l/x*. Since 
these, even more than the I/x’ term will be dominated by 
xHOMO, the same substitution used in (28) can be made. 
This will lead to the incorporation of these into the right 
hand side of Eq (29) and thus one is led again to exactly Eq 
(32). Thus for arbitrarily small x Eq (32) remains valid. 

Finally, we give a word about the scatter present in Fig 
1. Part of this is a consequence of the imprecision in the 
assumed edge/vertex ratio and the “atom energy density” 
(E-/N) used in simplifying Eq (31). Another part is 
undoubtedly due to the neglect of W, which introduces 
energy differences due to differences in branching. As we 
will discuss in detail elsewhere,” branching introduces 
changes in a-energy of about 0.1 /I/branch. This is about 
the range of scatter present. This argument for the 
probable importance of branching and the ultimate need 
to include the W, term suggest that the small but non-zero 
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contribution of the W3 term we have found is not just an 
artifact of our analysis. Because of the scatter in the 
points of Fig 1 it is difficult convincingly to demonstrate 
this more directly. 

In summary, Eq (32) provides a non-empirical explana- 
tion for the success of the empirical Streitwieser 
correlation of Dewar reactivity numbers with exact 
localization energies. In particuku, this correlation is not 
linear. Because the Dewar reactivity numbers are 
proportional to the ratio of the algebraic structure counts 
for the ground state and the reaction intermediate, Eq (3) 
explains why the traditional resonance method accounts 
for the relative reactivities of benzenoid hydrocarbons. 
When the parity of the resonance structures is also taken 
into account, aromatic structures containing 4m- 
membered rings can be. treated by the same equation. 
Note that there are conjugated hydrocarbons containing 
4m-membered rings but with zero eigenvalues in the 
spectrum of their molecular graphs (e.g. 4m-annulenes). 
Our discussions do not apply to them. Fortunately, these 
systems are necessarily not aromatic.‘6. 
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APPENDIX 
It is well known” that the number of edges, V. in a graph is 

related to the number of vertices, N, by the equation Y = 
N + R - 1, where R is the number of rings. For molecules such as 
antbracene containing three rings in ground state (two rings in the 
intermediate) and 14 vertices, the averaged value of v/N over 
ground and intermediate states is 1.11. For two rings the average is 
I.05 and for an infinite polyacene the average is 1.25. For a set of 
nine tricyclic molecules the averaged value of E,/N (for both 
ground and intermediate states) is 1.345 (8 =O+M9); for the 
infinite linear polyacene the average is” 1403. We have chosen 
the three ring case as representative of the typical molecule of 
interest to the organic chemist. 

Because of the minus sign in the expression for W,, the 
variations in v/N and E-/N largely cancel. Thus for the two ring 
case the coefficient at A, in Eq (32) becomes 2.86 and for the 
infinite linear polyacene it is 3.56. When the value of A, is 
inserted, the denominator becomes 1.166 for R = 2, I.177 for R = 3 
and I.207 for R = 30, showing that the structure of the molecular 
gmph has hardly any influence on the denominator in lQ (32). 


